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Abstract Our focus of current research is directed toward
clarification of novel inhibitors (pyrazolo[1,5-a] pyrimidine
(PP), thienopyridines (TP) and 2-ureido thiophene carbox-
amide (UTC) derivatives) targeting Checkpoint kinase 1
(CHK1), which is an oncology target of significant current
interest. Our computational approaches include: (i) QSAR
analysis was carried out on the computed steric/electrostatic/
hydrophobic/hydrogen bond donor/hydrogen bond acceptor
interactions with the pseudoreceptor surface, which yielded
predictive models capable of explaining much of the vari-
ance of inhibitors. The resultant optimum QSAR/CoMFA
models exhibited (Ntraining051, Ntest016, Rcv

200.47,
Rpred

200.7) for PP, (Ntraining045, Ntest09, Rcv
200.52,

Rpred
200.75) for TP and (Ntraining058, Ntest015, Rcv

20

0.67, Rpred
200.88) for UTC. (ii) Molecular docking and

molecular dynamics simulations experiments of the inhib-
itors into the binding site of CHK1 aided the interpretation
of the QSAR models and demonstrated the binding modes
in the aspects of inhibitor's conformation, subsite interac-
tion, and hydrogen bonding interactions, which indicated

that a set of critical residues (Cys87, Glu91, Glu85, Ser147,
Asp148, Glu17, Leu84 and Asn135) played a key role in the
drug-target interactions. The obtained results in the present
work will be fruitful for the design of new potent and
selective inhibitors of CHK1.
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Introduction

Cancer is a top killer of human beings exhibiting genomic
instability and heightened drug sensitivity due to underlying
defects in DNA repair or cell cycle regulation [1, 2]. However,
the clinical cancer therapies show lack of selectivity toward
cancer cells and resistant to DNA-damaging agents [3]. Re-
cently, checkpoint pathways that regulate the cell cycle in
response to DNA damage have gained great interests [4].

Checkpoint kinase 1 (CHK1), a serine/threonine protein
kinase, plays a critical role in DNA damage-induced check-
points responsible for the maintenance of mammalian ge-
nomic integrity and repair of damaged DNA [5]. CHK1 is a
54 kDa protein comprised of a highly conserved N-terminal
kinase domain (residues 1–265), a putative flexible linker
region, an SQ/TQ domain, and a C-terminal domain with ill-
defined function [6]. The SQ/TQ domain has several con-
served Ser-Gln (SQ) or Thr-Gln (TQ) motifs, in which the
serine or threonine residues are preferred phosphorylation
sites by ATR in vitro [7]. Through phosphorylation in the
SQ/TQ domain by ataxia telangiectasia mutated (ATM) and
Rad3-related (ATR) kinases, CHK1 arrests cells at various
DNA-damaging checkpoints (G1, S and G2) to initiate the
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DNA repair process. The inhibition of CHK1 abrogates the
S and G2 checkpoints and disrupts the DNA repair process,
resulting in premature chromosome condensation and lead-
ing to cell death, thereby they preferentially sensitize tumor
cells, especially p53-null cells [8].

Extensive studies with various cancer cell lines have
reported that the enhanced cell death is achieved under
genotoxic stresses by eliminating CHK1 via siRNA [9],
anti-sense [10], and small molecule inhibitors [11]. Inhibi-
tion of CHK1 represents a targeted approach to enhance the
cytotoxicity of DNA-damaging agents toward tumor cells
while having a lesser effect on normal cells, resulting in an
attractive target in the oncology field [12]. Thus, the devel-
opment of novel CHK1 inhibitors is of great interest, not
only from a drug development viewpoint, but also to pro-
vide molecular tools with which the biological functions of
CHK1 can be further elucidated.

More recently, several natural products have been proved to
be potent CHK1 inhibitors, which included various scaffolds,
e.g., Granulatimide and isogranulatimide (IC50 values of 0.25
and 0.1 nM, respectively) [13, 14], 7-hydroxystaurosporine
(IC50010 nM) [15, 16], AZD7762 (IC50 of 5 nM) [17],
PF477736 (Ki value of 0.49 nM) [18] and SCH900776
(IC5003 nM) [19]. Unfortunately, so far none of them have
progressed to being a clinical drug. One of the main bottle-
necks is the difficulty in attaining selectivity, which stems from
the diverse nature of the kinase substrates. The occurrence of
severe side effects of these inhibitors (e.g., strong single agent
activity, small volume of distribution, low systemic clearance
and a prolonged half-life of elimination) urgently calls for the
search of novel, potent, more selective, and less toxic CHK1

inhibitors [20].
In vitro assessment of the activity of CHK1 inhibitors

remains a labor-intensive and time-consuming operation. As
an important technology for drug design, in silico modeling
methods, such as QSAR (quantitative structure-activity re-
lationship) approaches, have been found to be valuable in
further optimization and development of novel inhibitors
[21–23]. Recently, 3D-QSAR studies were performed on a
series of 1,4-dihydroin-deno[1,2-c]pyrazoles inhibitors, us-
ing molecular docking and CoMFA, and the results sug-
gested that Cys87 and Glu85 were mainly involved in
hydrogen bonding interactions [24]. In another report, the
QSAR models were developed (for 5,10-dihy-dro-dibenzo
[b,e]1,4 diazepin-11-ones which the structures are different
with those employed in our study) based on the molecular
descriptors from both the ligand and the ligand-receptor com-
plex, which indicated that the strong hydrophobic interaction
between the ligand and the receptor, low RuleOf5 value and
QPlogKhsa, more Amine or Amide group and less carbonyl
group are favorable to activity improvement [25].

More recently, three different series of CHK1 inhibitors
(194 compounds) with diverse structures and biological

activities have been reported [26–29], however, to our
knowledge there has been no attempt to quantitatively study
the structure activity relationship of these derivatives and no
comprehensive features for the ligand-receptor interactions
have been demonstrated, previously. Thus in this work, we
applied the ligand- and receptor-based QSAR techniques to
these inhibitors. In addition, molecular docking and molec-
ular dynamics (MD) simulation were also utilized to orient
the compounds in the binding site of CHK1 kinase, further
to elucidate the probable binding modes of these inhibitors
at the allosteric site of the enzyme. The QSAR models as
well as the information gathered from molecular docking
and 3D contour maps are beneficial to identify the structural
features of CHK1 and also helpful in the design of novel
CHK1 inhibitors with improved activities.

Methods and materials

Biological data and molecular structures

The structures and biological activities of CHK1 inhibitors
(194) were taken from the literatures [26–29] and listed in
Tables S1-S3. These molecules comprised three different
classes of diverse pyrazolo [1,5-a] pyrimidine, thienopyri-
dines, and 2-ureido thiophene carboxamide derivatives. The
IC50 values were converted into the corresponding pIC50

(−logIC50) values, which were further used as the dependent
variables in the QSAR analysis. For carrying out CoMFA/
CoMSIA QSAR studies, each group of the molecules was
divided into the training set for model generation and the
test set for model validation. The test set compounds were
selected by considering both the distribution of biological
data and the structural diversity.

All molecular modeling and QSAR studies were per-
formed using Sybyl package (Tripos Associates, St.Louis,
MO). 3D structures of all molecules were constructed by
using the Sketch molecule module. Partial atomic charges
required for electrostatic interactions were computed by
Gasteiger-Marsili (for PP analogs) and Gasteigere-Huckel
(for TP and UTC analogs) methods. Each structure was fully
geometry-optimized using the Tripos force field [30] with a
distance-dependent dielectric and the Powell conjugate gradi-
ent algorithm with a convergence criterion of 0.05 kcal mol-1.

Conformational sampling and alignment

Molecular alignment is considered as a sensitive parameter
in QSAR analysis, and the quality of the model is directly
dependent on the alignment rule. Here, the molecular align-
ment was performed using “database alignment” in Sybyl
with the common substructures shown in the upper left
corner of Figs. 1, 2 and 3. Two alignment rules were employed
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to produce valid and reliable CoMFA/CoMSIA models: 1) the
ligand-based alignment, where the most active compound in
each group (compounds 38, 112 and 185) was selected as a
template to fit the remaining molecules (Figs. 1, 2 and 3). 2)
The receptor-based alignment was based on the geometries
obtained from docking, where all the molecules were
docked into the active site of the receptors, then the top scored
conformations were aligned together for CoMFA/CoMSIA
analysis (Figs. S1-S3).

CoMFA and CoMSIA set up

In order to explore the steric (S)/electrostatic (E)/hydrophobic
(H)/hydrogen bond donor (D)/hydrogen bond acceptor (A)
fields contributions to the binding affinities of the inhibitors,

and to build predictive QSAR models, CoMFA/CoMSIA
studies were performed based on the molecular alignment as
described.

The CoMFA descriptors, S (Lennard-Jones 6–12 poten-
tial) and E (Coulombic potential) field energies were calcu-
lated using Sybyl. A 3D cubic lattice with grid spacing of
2 Å in x, y and z directions, were generated automatically to
encompass the aligned molecules, the S and E fields were
scaled by the CoMFA-STD method with default energy of
30 kcal mol-1, and generated at each grid point with Tripos
force field using a sp3 carbon atom probe carrying a +1 net
charge with a van der Waals radius of 1.52 Å.

For CoMSIA analysis, five descriptors, namely S, E, and
H parameters and the D and A fields were calculated using a
sp3 carbon probe with a +1.0 charge atom and a radius of
1.0 Å placed at regular grid spacing of 2 Å, coupling with a
similar lattice box as used in CoMFA calculations. S indices
were related to the third power of the atomic radii, E
descriptors were derived from atomic partial charges, H
fields were derived from atom-based parameters [31], and
D and A indices were obtained by a rule-based method
based on experimental results [32].

Regression analysis and model validation

Partial least squares (PLS) method [33] was used to linearly
correlate the CoMFA /CoMSIA fields to biological activity
values. The CoMFA/CoMSIA descriptors were used as in-
dependent variables and pIC50 values were used as depen-
dent variables in PLS analyses to derive QSAR models. The
performance of models was evaluated using the leave-one-
out (LOO) cross-validation method which one compound
was removed from the data set and its activity was predicted
using the model derived from the rest of the data set. A

Fig. 1 Superimposition of PP compounds in the training and test sets
with common substructure shown in the upper left corner

Fig. 2 Superimposition of TP
compounds in the training and
test sets with common substruc-
ture shown in the upper left
corner
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cross-validated correlation coefficient Rcv
2 was generated

and provided as a statistical index of the predictive power.
PLS was conjunct with the cross-validation option to deter-
mine the optimum number of components (ONC). Then, the
ONC was used in the final non-cross-validated analysis; the
Pearson coefficient (Rncv

2), standard error of estimates
(SEE) and F values were calculated as a measure of the
quality of the models. Finally, the CoMFA/CoMSIA results
were graphically represented by field contour maps using
the field type ‘StDev*Coeff’. In addition to LOO method to
validate QSAR models, the established test set was used for
further evaluation, with the predictive correlation coefficient
(Rpred

2) was produced.

Molecular docking

To investigate the protein-ligand interactions, the Surflex
package was employed to generate an ensemble of docking
conformations. The Surflex uses an empirical scoring func-
tion and a patented search engine to dock ligands into the
receptor’s binding site [34]. Crystal structures of CHK1

(3OT3, 3PA5 and 2WMT) were retrieved from the RCSB
Protein Data Bank (http://www.rcsb.org), all the three cystal
structures are in ligand binding state (active state), which
possess 22 K (pyrazolo[1,5-a]pyrimidine analog), C73 (thie-
nopyridines) and ZYT (imidazol) compounds in the binding
site, respectively. Moreover, the structures of these mole-
cules are similar with the ligands (PP, TP and UTC analogs)
employed in the present work. The relative ligands were
extracted and polar hydrogen atoms were added, and the
water molecules in the crystal structures were not removed
before docking since the water molecules were found con-
served in different crystal structures. Protomol, an idealized
representation of a ligand that makes every potential inter-
action with the receptor, was used to guide molecular dock-
ing. Establishment of protomol supplies three manners: (1)
automatic probing of cavity in the receptor protein; (2)

ligand location in the same coordinate space in the receptor;
(3) specification of interacting residues. During the proto-
mol generating process, two parameters are critical for
forming appropriate binding pocket, in which one is the
protomol_bloat determining how far from a potential ligand
the site should extend, and the other is the protomol_threshold
determining how deep into the protein the atomic probes used
to define the protomol can penetrate. In the present work, for
3OT3, 3PA5 and 2WMT docking analyses, the protomol_
bloat values were set to 1, 1 and 2 and the protomol_threshold
were set to 0.5, 0.5 and 0.01, respectively. Finally, each of the
inhibitors was docked into the receptor 10 times and various
scores were calculated for each conformation of the inhibitors
to evaluate the docking analysis, i.e., D_score, G_score,
Chemscore, PMF_score and the total score [35]. During the
docking process, the protein was regarded as rigid and the
ligand was flexible. According to the total score function, the
docking poses were saved for each compound, and the top
ranked conformations were extracted and aligned together for
further QSAR analysis.

Calculation and selection of dragon descriptors

Molecular descriptors have been demonstrated to play impor-
tant roles in developing QSAR models and have been suc-
cessfully applied in many in silico modeling processes [36–
38]. In this work, Dragon Professional, version 5.0 [39] was
employed to calculate all molecular descriptors (shown in
Table S10). And 1356 descriptors were calculated for each
compound. The stepwise linear regression method as the var-
iable selection in R software-version 2.13.0 (www.r-project.
org) was employed to reduce the descriptor space. The results
indicated that no single descriptor was capable of predicting
the activity. Using the linear regression for variable selection,
the extracted descriptors (shown in Table 1) are ATS3e, Du and
MATS8m for PP analogs, Dp, RDF060m, G3m and Mor24v for
TP dataset, R4u and nRNHR for UTC analogs. The obtained

Fig. 3 Superimposition of UTC
compounds in the training and
test sets with common
substructure shown in the upper
left corner
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descriptors were further introduced into building QSAR mod-
els in order to improve the robustness and generalization ability
of the models.

Molecular dynamics simulations

The MD simulations were performed using the GROMACS
package 4.0.7 [40] using the GROMOS96 force field [41].
The molecular topology files were generated by the program
PRODRG2.5 [42]. The whole complex was solvated in
SPCE water molecules, in addition, counter ions (five Na+,
four Na+ and three Na+ ions) were added to neutralize the
charge of each system, i.e., 3OT3.pdb and 3PA5.pdb and
2WMT.pdb, respectively. The size of the rectangular cell
was 7.21×6.16×8.48 nm, 7.24×5.95×8.49 nm and 7.087×
6.126×8.164 nm, respectively, containing 11,058, 10,956,
9039 water molecules in each complexes. Additionally, the
minimum distance between the protein and the box walls
was set to more than 8 Å so that the protein does not directly
interact with its own periodic image given the cutoff in each
complex. The solvated systems contain approximately
35,877 atoms for 3OT3, 35,543 atoms for 3PA5 and
29,736 atoms for 2WMT including the protein-ligand com-
plexes and waters, respectively. And the full system has been
optimized without constraints using the steepest descent inte-
grator for 5000 steps.

Simulations were run in the NPT ensemble and at a
temperature of 300 K. The temperature was kept constant
by the Berendsen thermostat [43], the coupling time was
2 ps. The pressure was maintained by coupling to a refer-
ence pressure of 1 bar using the Parrinello-Rahman scheme
[44]. Electrostatic interactions were calculated using the
particle mesh Ewald method [45]. The LINCS algorithm
was used to restrain all bond lengths [46]. Cutoff distances
for the calculation of Coulomb and van der Waals interac-
tions were 1.0 and 1.4 nm, respectively. The system was
equilibrated via a 200 ps MD simulation. Finally, a 5 ns
simulation was performed with a time step of 2 fs.

Results and discussion

QSAR model

To judge whether a QSAR model is reliable for prediction of
unknown molecules, several statistical parameters including
Rcv

2, Rncv
2, SEE and F values should be evaluated. Table 2

summarizes the statistical results of the optimum models
(ligand-based models).

PP

During the molecular modeling process, 51 compounds out
of the total 67 CHK1 inhibitors were selected as training set
and the remaining 16 compounds were used as test set. The
statistical parameters of the optimal models are summarized
in Table 2.

The best CoMFAmodel gives a good Rcv
2 of 0.467 with six

components, indicating a proper internal predictive capacity of
the model. A high Rncv

2 of 0.823 with a low SEE of 0.503 for
the final model shows its self-consistency. In terms of the
relative contributions, S and E account for 51% and 29.7%,
respectively, indicating that the S field contributes more to the
binding affinities. Additionally, another three descriptors ATS3e,
Du andMATS8m alsomake 10.3%, 29.7% and 0.5%, respective
contributions to this model, which effectively increase the
robustness of the model. ATS3e is 2D autocorrelation descrip-
tors which is the Broto-Moreau autocorrelation of a topological
structure-lag 3, and is weighted by atomic Sanderson electro-
negativities. The Du descriptor is the WHIM descriptors which
belong to the 3D descriptor. The other descriptor is MATS8m,
Moran autocorrelation-lag8/weighted by atomic masses, which
is a 2D-autocorrelation descriptor, the positive regression coef-
ficient suggests in favor of increased autocorrelation contents
of eight-member structural graphs weighted by atomic
masses for the activity [47].

To understand and explain the chemical meaning of the
descriptors, the dataset was used. As can be appreciated the

Table 1 Symbols of the descriptors used in the models and their definitions

Symbols Descriptor family Definition

ATS3e 2D autocorrelations Broto-Moreau autocorrelation of a topological structure-lag 3/weighted by atomic Sanderson electro

Du WHIM descriptors D total accessibility index/unweighted

MATS8m 2D autocorrelations Moran autocorrelation-lag 8/weighted by atomic masses

Dp WHIM descriptors D total accessibility index/weighted by atomic polarizabilities

RDF060m RDF descriptors Weighted by atomic masses

G3m WHIM descriptors 3st component symmetry directional WHM index/weighted by atomic masses

Mor24v 3D-MoRSE descriptors 3D-MoRSE-signal 24/weighted by atomic van der Waals volumes

nRNHR Functional group counts Number of secondary amines (aliphatic)

R4u GETAWAY descriptors R autocorrelation of lag 4/unweighted

J Mol Model (2012) 18:3227–3242 3231



greater values of ATS3e are for compounds 28, 29 and 30,
with R3 substituted with hydrogen atoms. It is explained by
the worse interaction with the surface of the binding site for
these compounds. Once the R3 position of compounds 38
and 65 are functionalized with different -Cl or -Br side
chains, the particular conformation adopted by its R3 sub-
stituents significantly enhance the electrostatic interactions
with the receptor residues, possessing lower values of
ATS3e; this phenomenon is consistent with the contour maps
with red contours at this position.

The CoMSIA model (SE model) shows poor internal
predictions relative to the CoMFA model, which ends in
statistical results of Rcv

200.39, Rncv
200.581, F016.275

with four optimal components using the same Dragon
descriptors as the CoMFA model.

The test set molecules are further used to validate the
efficacy of the obtained models. The Rpred

2 is 0.701 for the

optimal CoMFAmodel and 0.667 for CoMSIA model. For the
CoMFA model, molecules 16, 57 and 58 are regarded as out-
liers since their residuals between the experimental value and
the predicted value are up to 2.0 log unit. All these results
suggest that the CoMFAmodel is superior to the CoMSIA one.

The correlation between the predicted activities and the
actual activities is displayed in Fig. 4a. Clearly, all points are
uniformly distributed around the regression line, suggesting
the reliable predictive ability of the model.

TP

The total of 54 CHK1 inhibitors was divided into a training
set composed of 45 compounds and a test set consisting of 9
chemicals. The statistical results obtained from standard
CoMFA model constructed with S and E fields are summa-
rized in Table 2. Statistical data shows Rcv

2 0.522, Rncv
2

0.824, SEE 0.371, F 29.745 for the optimum CoMFA mod-
el. The S field descriptor explains 38.2% of the variance,
while the E descriptor explains 21.5%, indicating that the S
field makes more contributions to the inhibitory activity. In
developing this model, another four descriptors Dp,
RDF060m, G3m and Mor24v are also employed, contributing
9.8%, 13.5%, 4.8% and 12.1% to this model, respectively.
RDF060m is radial distribution descriptors centered on differ-
ent interatomic distances interpreted as the probability distri-
bution of finding an atom in a spherical volume of certain
radius. RDF can be interpreted as the probability distribution
to find an atom in a spherical volume of radius r. Based on this
definition it is plausible to presume that RDF060m encodes a
partial contribution of the Caseari’s bioactivity at regions
where atoms are distanced r06.0 Å from the geometrical
center of each molecule. Mor24v is a 3D-MoRSE descriptor
which is weighted by atomic van der Waals volumes. This
descriptor extracts information from the 3D atomic coordi-
nates by using the same transform as in electron diffraction
studies [47]. The descriptor G3m belongs to the WHIM
descriptors, which is based on the statistical indices calculated
from projection of atoms along principal axes. The algorithm
consists of performing a principal-components analysis on the
centered Cartesian coordinates of a molecule by using a
weighted covariance matrix obtained from different weighting
schemes for the atoms. Dp descriptor is theWHIM descriptors
belongs to the 3D descriptors, it is the D total accessibility
index which is weighted by atomic polarizabilities.

The Dragon descriptor RDF060m explained in the model
encoded specific structure information. For example, for
compounds 112 and 121, the lower value of RDF060m
corresponds to compound 121 where the substituent in
position R3 is hydrogen atom which is located far from
the receptor residues. In the case of compound 112 when
the R3 is positioned with larger group could significantly
interact with the receptor, thus enhancing its inhibitory

Table 2 The best results of the CoMFA analyses for the training and
test set compounds

Parameters PP analogs TP analogs UTC analogs
CoMFA CoMFA CoMFA

Rcv
2 0.467 0.522 0.673

Rncv
2 0.823 0.824 0.873

SEE 0.503 0.371 0.42

F 34.966 29.745 71.607

Rpred
2 0.701 0.745 0.877

SEP 0.874 0.612 0.674

Nc 6 6 5

Field contribution

S 0.51 0.382 0.497

E 0.297 0.215 0.238

H – – –

D – – –

A – – –

ATS3e 0.103 – –

Du 0.085 – –

MATS8m 0.005 – –

DP 0.098 –

RDF060m 0.135 –

G3m 0.048 –

Mor24v 0.121 –

nRNHR 0.16

R4U 0.105

Rcv
2 0 Cross-validated correlation coefficient after the leave-one-out

procedure; Rncv
2 0 Non-cross-validated correlation coefficient;

SEE 0 Standard error of estimate; F 0 Ratio of Rncv
2 explained

to unexplained 0 Rncv
2 /(1−Rncv

2 ); Rpred
2 0 Predicted correlation

coefficient for the test set of compounds; SEP 0 Standard error of
prediction; Nc 0 Optimal number of principal components; S 0
Steric; E 0 Electrostatic; H 0 Hydrophobic; D 0 Hydrogen-bond-
donor; A 0 Hydrogen-bond-acceptor
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activity, which is also supported by the steric contour maps
(blue).

For CoMSIA analysis, the model was developed by using
S and E fields, giving a result of Rcv

200.587 using nine
variables. Inclusion of a third field such as H, D or A to this
model also exhibits good statistical parameters with Rcv

2 of
0.508, 0.505 and 0.535, respectively. The SEHD, SEDA,
SHDA and EHDA combinations also produce significant
models (Rcv

2 of 0.521, 0.544, 0.548 and 0.544, respectively).
So a conclusion can be drawn that the D field plays a key role
in building the models, which is also explained by the greatest
field contributions of D field in each model. The external
predictive Rpred

2 is 0.745 for the CoMFA model and 0.436
for the CoMSIA model, respectively. Overall, the perfor-
mance of the CoMFAmodel is superior to that of the CoMSIA
one.

Compound 79 in the optimum CoMFA model is treated
as an outlier. Inclusion of this compound, the model shows
poor predictive ability with Rpred

2 of 0.192. Omission of
compound 79 results in an increased Rpred

2 value of 0.745.
Its outlier status is due to the low inhibitory activity (pIC500

6.6757) which beyond the predictive power of this model
and the residual between the experimental value and pre-
dicted value is nearly to 2.0 log unit. In addition, it could
stem from its structural uniqueness (the only one compound

has
H
N

substitution at R2), when compared to its counter-

parts, compounds 68–78 and 80. The correlation between
the predicted activities and the actual activities is displayed
in Fig. 4b, the plots represent a uniform distribution around
the regression line with respective slope and intercept very
close to one and zero, indicating the satisfactory predictive
capability and accuracy of the model.

UTC

The statistical results for the final CoMFA model are summa-
rized in Table 2. The best CoMFAmodel (model CoMFA-SE)

has an Rcv
2 value of 0.673 using four components; the model

also explains Rncv
2 of 0.873, SEE of 0.42 and F value of

71.607, which indicates that the QSAR model are reliable
and able to predict binding affinities of new derivatives accu-
rately. CoMFA-SE model indicates contributions of S and E
fields are 49.7% and 23.8%, respectively. In this work,
nRNHR and R4U descriptors are also applied to constitute
the models, which possess 16% and 10.5% contributions to
the inhibitory activity. R4U, a GETAWAY descriptor, repre-
sents R autocorrelation of lag 4 (unweighted), demonstrates
the positive effect of the molecule geometry and size and
shape properties. nRNHR is a Functional group counts de-
scriptor, which considers the number of secondary amines
(aliphatic) of the molecules in building models, which can
formH-bonds with the receptor. For example, compounds 131
and 132 (nRNHR value01) have higher nRNHR values than
compounds 128 and 129 (nRNHR value00), being in agree
with the inhibitory potency, which is due to that the secondary
amines in compounds 131 and 132 serve as H-bond donor to
interact with the protein, thus enhancing its inhibitory activity.

For the CoMSIA analysis, the CoMSIA-SE model exhib-
its a proper internal predictivity demonstrated by the statis-
tical results of Rcv

200.72, Rncv
200.833, SEE00.478 and

F065.967 based on the use of four components. Addition-
ally, incorporation of other fields (H, D and A) also shows
comparable internal predictivity (Table S8).

The external predictive Rpred
2 is 0.701 for the CoMFA

model; examination of the residuals between the actual and
the predicted values suggests that compound 152 might be an
outlier. Omission of compound 152 results in an increased
Rpred

2 value of 0.877. The outlier status is due to the higher
residue between the observed and the predicted biological
activity which further confirms the robustness and statistical
confidence of the derived model. Figure 4c depicts the corre-
lation between the experimental and the predictive activities
of the CoMFA model. Clearly, all points are rather uniformly
distributed around the regression line, indicating no existence
of systematic errors in the model, which further proves the
satisfactory predictive ability of the derived model.

Fig. 4 Graphs of the predicted pIC50 versus the experimental pIC50 values of the optimal models. (a) CoMFA model of PP analogs. (b) CoMFA
model of TP analogs. (c) CoMFA model of UTC analogs

J Mol Model (2012) 18:3227–3242 3233



All the models built for the three classes of compounds
have shown that CoMFA models possess greater robustness
compared to CoMSIA ones. The above QSAR models cul-
minating from the training set yield a regression equation
with a high degree of statistical significance and perform
well in predicting the biological activities of compounds in
the test set, which indicate the models are predictive and
unbiased.

3D-QSAR contour maps

The stdev*coeff contour maps were constructed to view the
field effects on the target features. The CoMFA contour
maps denote the region in the space where the aligned
molecules would favorably or unfavorably interact with
the receptor while the CoMSIA contribution maps denote
those areas within the specified region where the presence of
a group with a particular physicochemical property will be
favored or disfavored for biological activity.

PP

Figure 5 shows the CoMFA S and E contour maps. Com-
pound 38 is served as reference molecule. In the CoMFA S
field (shown in Fig. 5a), a large green contour situates near
R1 substituent indicates that bulky groups at this position are
beneficial to activity. This discovery is well illustrated by
the example that compound 4 (nitrile) is more potent than
compound 1 (hydrogen). Another large green contour
shown around R3 substituent represents that bulky group
would enhance the activity. The fact that compound 45
(−CH0CH-CH2OMe) is more potent than compound 46
(−CN) is a good example. A large yellow contour is located
around R2 substituent, indicates the areas where steric bulk
would decrease the inhibitory activity, which can be shown
by the order of compounds 19 (−Me) > 20 (−Et) > 24

( ). Additionally, a large green contour is observed

beside the yellow contour implies that both of the bulky
favored and unfavored contours emerge at the same region,

indicating that a balance of these properties among the
groups present at this region is required for optimum
binding.

The E field contour is presented in Fig. 5b. A large and
two small red isopleths around the R3 substituent represent
an area where an electronegative group is favored. Hydrox-
yethyl group (compound 44) at this position, bearing nega-
tive GH charges, increases the activity; while ethyl
(compound 41) and propynyl group (compound 42) having
positive charges decrease the activity. A red contour in the
vicinity of the side chain of R2 reveals that the electron-
withdrawing substituent is essential for the inhibitory activ-
ity. This may be the reason why compound 27, possessing
electron-withdrawing group (phenyl ring) has higher
potencies than compound 22 with electron-donating
group (−C (CH3)3). However, for the most potent compound
38, with an electropositive group (−H) attaching this contour
is unfavorable for the inhibitory activity, thus modifications
on R2 substituent may be requirement for increasing the
activity. Another red contour near R1 substituent is conflict
with the most potent compound 38 (−CH3), suggests that
modification may be made in this region. Furthermore, a
large blue contour is observed outside the R1 substituent
and around the red contour, which strongly delimits the
sideward relocatability, also indicates that electropositive
groups extended to this contour would benefit for the in-
hibitory activity.

TP

The S and E field distributions of CoMFA are depicted in
Fig. 6. Compound 112 is displayed in the map in aid of
visualization. Figure 6a depicts the S contour map of the
CoMFA model. Sterically favored regions (colored green)
appear around R3 substituent, which explains the experi-
mental results that compounds 112, 120 and 121 have the

activity order of 112 (
NH2

O
) >120 (−Br) >121 (−H).

Similarly, a broad region of green contour is displayed near
the R2 substituent, indicates that a bulky substituent at this

Fig. 5 CoMFA StDev*Coeff
contour plots for PP analogs.
Compound 38 is superposed as
the reference molecule in the
map. (a) Steric field:
favored-green (80%) and
disfavored-yellow (20%); (b)
Electrostatic field: favored-blue
(85%) and disfavored-red (15%)
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site would be favorable. Exactly, the inhibitory activity of
compounds 69 (substituted by hexatomic ring), 70 (five-
membered ring), and 71 (tetratomic ring) is placed in the
order as 71<70<69. A yellow contour below the R1 sub-
stituent shows that appropriately minor substituents at the
position would improve the biological activities. For exam-
ple, compound 68 with the minor substituent (−H) exhibits a
considerable gain in binding affinity, while compounds 72

(
N

H2N
) and 78 (

N

NH2

) significantly decrease the

biological activities for the bulky substituents at this area.
Figure 6b shows the E contour map obtained from the

CoMFA analysis. Two red polyhedrons near the oxygen atom
of R3 substituent indicate its favor for the electronegative
charged substituents. We observe that a similar behavior is
evinced by all the molecules possessing electronegative
groups in this region. The presence of blue contour map at
the amino group of R3 substituent indicates that electroposi-
tive groups attached to this position show improved activity,
as observed in compounds 82 (−F) and 106 (−OCF3) possess-
ing decreased inhibitory activity.

UTC

The CoMFA S and E fields for the analysis based on the
alignments of the conformations are presented in Fig. 7. To
aid in visualization, compound 185 is displayed in the maps.
A green contour embedded in R2 substituent shows that
appropriately increased bulky groups at this position would
improve the biological activities. By comparing compound
141 with compound 142, it can be concluded that the

replacement of NH(141) by the bulkier group

NH(142) increases the inhibitory activity. A yellow

contour is found near R3 substituent and explains the neces-
sity of minor groups to increase the activity, which can be
explained by the order of compounds activities: 185>184
that are based on descending of the steric property. The
increment of the inhibitory activity of compound 193

(
N

O) relative to compound 192 (−N(Me)2) shows that

a bulky substituent at R3 substituent affects positively the
inhibitory activity, which is due to the green contour at this
position.

The E contour map obtained from the CoMFA analysis is
shown in Fig. 7b. The blue contour in the vicinity of R2

substituent indicates that the electropositive groups are fa-
vored for the activity, which can be explained by the activity

order of compounds 150 (
N

O) <151 (
N

NMe). More

electropositive substituents are predicted to be beneficial
(blue areas) around R3 substituent. For compound 185,
bearing a sulfur atom extended into this contour exhibits
higher activity than compound 186, which locates the sulfur
atom at another position. This also may be the reason why
compound with methyl substituent, e.g., compound 177, is
more potent than molecule 176 with nitrile substituent at this
particular position. The red region outside R3 substituent
suggests that negative charged groups would beneficial for
the activity. That may be the reason why compound 133
(−OH) has higher potency than compound 132 (−CH3).

On the basis of the spatial arrangement of the field con-
tributions, if the inhibitor structure is more consistent with
the favored contours in each field, then this may enhance
CHK1 inhibitor activity. The R1 and R2 substitutes of PP
analogs provide more modifiable information, which these
groups in compound 38 exhibits clash with the contour
maps. For TP analogs, R3 substituted groups could be mod-
ified to design new compounds with high inhibitory activity.
As to UTC analogs, more potent molecules can be obtained
by modifications on R2 and R3 positions.

Molecular docking studies

In our work, all compounds were docked into the relative
binding site of CHK1 crystal structures, and the optimal
conformations of these compounds were determined. To
elucidate the interaction mechanism, the most potent inhib-
itors among the dataset, were selected for more detailed
analysis.

Fig. 6 CoMFA StDev*Coeff
contour plots for TP analogs.
Compound 112 is superposed as
the reference molecule in the
map. (a) Steric field:
favored-green (80%) and
disfavored-yellow (20%); (b)
Electrostatic field: favored-blue
(85%) and disfavored-red (15%)
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PP

As a reference for other compounds, ligand 38 was used as a
model drug (Fig. 8) to show the docking modes of this class
of CHK1 inhibitors. The ligand-enzyme interaction analysis
shows that Leu137, Glu91, Cys87, Asp148, Ser88, Gly90
and Tyr86 are the important residues present in the active
site. Compound 38 binds to the kinase through key H-bonds
interactions: (1) Between the -NH of ring A (Fig. 9a) and the
-COO of Glu91 (−O···HN, 1.90 Å, 160.9°); (2) Between the
backbone carbonyl oxygen of Cys87 and the amino of ring
B (Fig. 9a) (−O···HN, 2.46 Å, 129.8°; -O···HN, 3.47 Å,
150.2°). (3) Between the nitrogen atom of ring C (Fig. 9a)
and the -NH group of Cys87 residue (−N···HN, 2.37 Å,
157.6°). (4) The interaction between the nitrogen atom of
ring D (Fig. 9a) and the side chain of Asp148 is bridged by a
structural molecule W502. (5) Ring B and ring C all form
arene-cation interaction with Leu137 which further enhance
the binding activity.

Interestingly, the docking result is well consistent with
the CoMFA contour map analysis, which further validate the

QSAR model overall. The R2 substituent is fitted nicely into
a large hydrophobic pocket composed by Leu84, Ala36,
Val23 and Val168, suggesting that a relatively bulky sub-
stituent is needed, which is evidenced by the presence of a
green contour around this area (shown in Fig. 5a). Addi-
tionally, it is obvious that a large empty cavity is present on
R3 substituent. For compound 38, the R3 substituent almost
extends outside this binding site, indicating that in this area
the steric interaction may be favorable, which is in accord
with the contour map with a green contour in this region.
The yellow contour observed near R2 substituent indicates
that steric potentials are not desirable, which is confirmed by
the docking results that bulky substitutions at this position
will make clash with residues Ser88, Gly90 and Tyr86. A
red contour near R1 substituent is surrounded by the posi-
tively charged Lys38 and the neutral amino acid residues
Ala36 and Leu84, which may explain the increased activity
expected from the introduction of electronegative groups in
this region. Due to the H-bond formed by the -NH of ring A
and backbone -COO group of Glu91, where the -NH as an
H-bond acceptor and Glu91 as an H-bond donor, so nega-
tive charged substituents in this region are favorable for the
inhibitory activity, which is evidenced by the red contour
near this area. Interestingly, the -Cl at R3 substituent almost
has no interaction with the receptor, which incites us to
investigate the reasons responsible for it. We compare com-
pound 38 with compound 37 (possesses a -H at this posi-
tion) by calculating the ClogP values, the partition
coefficient of compound 38 is 1.25 while compound 37 is
0.53, the difference may account for the phenomenon that
the -Cl at this position may effectively increase the lipsolu-
ble of the compound, which is favorable for its membrane
transporting.

TP

The binding mode of compound 112 is shown in Fig. 10.
The specific cleft in which the ligand binds (within 4.5 Å)
contains polar (Glu17, Glu85, Tyr86, Cys87, Ser88, Gly89,
Gly90, Glu91, Ser147 and Asp148) and non polar (Ala36,
Leu84, Val23) amino acids. Compound 112 is placed inside
the active site and demonstrates the following interactions:

Fig. 7 CoMFA StDev*Coeff
contour plots for UTC analogs.
Compound 185 is superposed as
the reference molecule in the
map. (a) Steric field:
favored-green (80%) and
disfavored-yellow (20%); (b)
Electrostatic field: favored-blue
(88%) and disfavored-red (12%)

Fig. 8 Docked conformations derived for molecule 38 of PP analogs
(shown in ball and stick). H-bonds formed by residues and molecule
directly and mediated by water indirectly are shown as dotted lines
with blue and red color, respectively. W502 represents water molecule.
The nonpolar hydrogens are removed for clarity
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The oxygen atom of region A (Fig. 9b) forms H-bond with
-NH group of Cys87 (−O···HN, 2.07 Å, 149°). The -NH2

group of region A forms two H-bonds with the backbone
-CO of Glu85 (−O···HN, 1.89 Å, 140.5°; -O···HN, 3.5 Å,
147.4°). The -NH group of ring D (Fig. 9b) acts as a H-bond
donor by binding to the -CO group of Glu17 (−O···HN,
2.93 Å, 80°). The -NH group of region A is also involved
in hydrogen bonding interaction with the backbone of
Ser147 through a structural water molecule W401. Addition-
ally, the -NH group between ring C (Fig. 9b) and ring D
interacts with Glu91 through the bridge water molecule
W360 and signifies the importance of the water molecules
in ligand binding.

It is remarkable to note that on R2 substituent there is
sufficient room to introduce a large group into the hydro-
philic pocket composed by Asp148, Glu17 and Glu91,
which is similar to the S contour map (shown in Fig. 6a).
Docked conformation of compound 112 within the binding
pocket indicates that the electropositive residue Glu91 and
the neutral amino acids Gly89, Gly90 appear near the phe-
nyl group of R3 substituent, where electronegative substitu-
ent would favor the interaction between ligands and CHK1,

which is evident from the presence of a blue contour at this
position (Fig. 6b).

UTC

Compound 185 was selected as a template to show the
docking mode of this class of inhibitors. The ligand-
enzyme interaction shows that Cys87, Glu85, Leu84,
Asn135, Ser147, Tyr86 and Ser88 are the most important
residues present at the binding pocket. In Fig. 11, the bind-
ing mode is presented, which further reveals the main inter-
actions within the enzyme active site. The observed
interactions are: (1) The sulfur atom of ring B (Fig. 9c)
forms H-bond with the backbone -NH of Cys87 (−S···HN,
2.76 Å, 160°). (2) Three interactions of region A (Fig. 9c)
(−NH group, -NH2 group and the oxygen atom) with -CO of
Glu85 (−O···HN, 2.74 Å, 154.1°), the backbone of Glu85
(−O···HN, 2.29 Å, 149.1°, -O···HN, 3.94 Å, 142.4°) and
-CO of Leu84 (−O···HN, 3.76 Å, 67.8°), respectively. (3)
The oxygen atom between ring B and ring C (Fig. 9c)
interacts with Asn135 and Ser147 bridged by a water
molecule W2021.

As displayed in Fig. 11, the hydrophilic amino acid
residues Asp148, Asn135, Lys38 and Gly16 locate around
R2 substituent, which correlates well with the S contour map

Fig. 10 Docked conformations derived for molecule 112 of TP
(shown in ball and stick) CHK1 kinase. H-bonds formed by residues
and molecule directly and mediated by water indirectly are shown as
dotted lines with blue and red color, respectively. W360, W401 and
W419 represent water molecules. The nonpolar hydrogens are re-
moved for clarity

Fig. 9 The structures of the
most active molecules used
in the contour analyses. (a)
Compound 38 for the group of
PP analogs. (b) Compound
112 for the group of TP
derivatives. (c) Compound 185
for the group of UTC analogs

Fig. 11 Docked conformations derived for molecule 185 of UTC
(shown in ball and stick) CHK1 kinase. H-bonds formed by residues
and molecule directly and mediated by water indirectly are shown as
dotted lines with blue and red color, respectively. W2021 represents
water molecule. The nonpolar hydrogens are removed for clarity
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of the CoMFA model (shown in Fig. 7a). The R3 substituent
is surrounded by polar amino acids Gly90, Tyr86 and Ser88,
suggesting that polar groups at this position are favorable for
the binding affinity, this observation is corroborated by
compound 112 possessing a polar group in this region, in
addition, a yellow contour in this region suggests that bulky
group would decrease the binding affinity; replacement with
too large substituents would potentially lead to steric clash
with the above described residues. Residues Asp148, Val23,
Gly16 and Leu15 around R2 substituent suggest that elec-
tropositive substituent would enhance the binding activities.
The results match well with E contour map of the CoMFA
model (Fig. 7b). The blue contour near the sulfur atom of R3

substituent indicates an electropositive favorable region,
which is confirmed by the docking results that electroposi-
tive substituents will have a favorable interaction with res-
idues Leu15, Leu137 and Gly90.

Based on the above observations, we can speculate that
the network of H-bonds formed between CHK1 and the
ligands are crucial for molecular recognition. For PP ana-
logs, it is shown in Fig. 12a that Cys87 and Glu91 solidly
form H-bonds with compound 38, while water molecule
(W502) mediates interactions between compound 38 and
residue Asp148. Additionally, two arene-cation interactions
involving Leu137 are found to enhance the binding affinity.
As to TP analogs, residues Glu17, Glu85, Cys87, Glu91 and
Ser147 coupling with two water molecules (W401 and
W360) form H-bonds with compound 112 (shown in
Fig. 12b). Interestingly, residues Leu84, Glu85 and Cys87
are identified as the main contributors to the binding affinity
of UTC analogs. And water molecule W2021 is found to
mediate the hydrogen bonding interactions with residues
Asn135 and Ser147 (shown in Fig. 12c).

By comparison, the main conclusions are summarized as
follows: (1) One common amino acid residue Cys87 is
found to possess hydrogen bonding interactions with the
three series of inhibitors. (2) Glu91 is common for PP and
TP analogs; For the TP and UTC derivatives, amino acid
residues Glu85, Cys87 and Ser147 are involved in the

binding mode at the same time. (3) PP, TP and UTC inhib-
itors all form more than five H-bonds with CHK1 kinase,
indicating that they all exhibit potent inhibitory activity. (4)
In the three systems, water mediated interactions are also
significant for the binding affinity.

Consequently, the docking analysis reveals that the S, E,
H and H-bonding interactions between ligands and key
amino acid residues in the binding pocket of CHK1 correlate
well with the contour maps, indicating that the QSAR model
is reasonable and can offer constructive suggestions for
further modification of CHK1 inhibitors.

Molecular dynamics simulations

To further evaluate the complementarity of the ligands and
the receptor, MD simulation in explicit water is carried out.
The derived best docked structure has been subjected to MD
simulation. The three docked complex structures of 3OT3-
38, 3PA5-112 and 2WMT-185 have performed 5 ns
simulations.

PP

The RMSD of 3OT3 complex is shown in Fig. 13a (in blue).
The RMSDs of the trajectory with respect to their initial
structure range from 1.2 to 2 Å. Especially, between 2 and
2.5 ns, the value is totally off the baseline even up to 2.4 Å.
However, after 0.5 ns, the complex seems to gradually
stabilize and finally reach equilibrium. It is because that
the new neighboring residues make the ligand incompatible
with the surroundings, then it is pulled back to the active site
again by that hydrogen bonding interactions. Additionally,
the average conformation derived from the trajectory takes
almost the original hydrogen binding mode. The RMSD of
the ligand is also shown in Fig. 13a (shown in red), the
RMSD of compound 38 increases to 1 Å after 0.2 ns and
maintains this value until the end of the simulation, suggest-
ing that the position and orientation of the ligand is stable.

Fig. 12 Stereoview of the docked conformations of compounds 38,
112 and 185, respectively, in the active site of CHK1 kinase. The H-
bonds are shown by broken lines. Compounds 38, 112 and 185,
colored purple, cyan and blue are presented in pictures a, b and c,

respectively. The important amino acid residues, Glu91, Cys87,
Asp148, Glu85, Glu17, Leu84, Ser147, and Asn135(stick rendering)
are colored by atom type (C, yellow; N, blue; H, white; O, red)
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The binding mode of compound 38 with 3OT3 is shown in
Fig. 13b; the ligand is anchored into the binding site via a
network of H-bonds involving Glu91, Cys87, Lys38 and
Leu15. Docking results of compound 38 into the receptor
indicate that after MD simulation almost all H-bonds are
preserved (between ring A and Glu91, ring B and Cys87, ring
C and Cys87), three new H-bonds are also found to exist
between the nitrogen atom of ring D and Lys38 of 3OT3 (H-1).

As can be seen from the docking results (shown in Fig. 8),
one water molecule near the nitrogen atom of ring D bridges
the ligand and receptor interaction, however, disappears after
MD simulation, rather, a novel water molecule is involved in
hydrogen-bonded network with the -NH of ring A.

TP

In the simulation of the 3PA5-112 complex, the RMSD is
stable after 3 ns (in blue). The RMSD of the ligand is also

calculated to obtain information on position fluctuations and
movements of ligand atoms (in red). The RMSD of compound
112 decreases to 0.3 Å in 1.2 ns and then rises up again to
1.3 Å after about 2.2 ns. As a result (Fig. 14), the H-bonds
involving the -O of region A and Cys87 (H-7), the -NH2 at
region A and Glu85 (H-5), the -NH of ring D and Glu17 (H-2)
are persistent after the simulation, leading to define such an
interaction as the major contact between the protein and
inhibitors. Moreover, new H-bonds are formed between the
-S of ring B and Cys87 (H-8), the -NH2 of region A and
Leu15 (H-6), the -N of ring C and Glu17 (H-3), enhancing
the stability of compound 112 in the binding site. It is also
interesting to note the impact of water molecules on the
interaction, the original water molecule presenting in the
docking structure moves away during MD simulation and
the interactions mediated by the two water molecules also
vanished. However, another two new H-bonds are formed
between the -NH of ring D and Glu91 (H-1), mediated by one

Fig. 13 (a) The root-mean-square deviation (RMSDs) of docked
complex (in blue) and ligand (in red) versus the MD simulation time
in the MD-simulated structures shown in the lower left corner. View of
superimposed backbone atoms of the lowest energy structure of the
MD simulation (cyan) and the initial structure (green) for compound
38-3OT3 complex. Compound 38 is represented as line in red for the

initial complex and stick in cyan for the lowest energy complex. (b)
Plot of the MD-simulated structures of the binding site with compound
38. H-bonds are shown as dotted blue and red lines; Active site amino
acid residues are represented as sticks; the inhibitors are shown as stick
and ball model

Fig. 14 (a) The root-mean-square deviation (RMSDs) of docked
complex (in blue) and ligand (in red) versus the MD simulation time
in the MD-simulated structures shown in the upper left corner. View of
superimposed backbone atoms of the lowest energy structure of the
MD simulation (cyan) and the initial structure (green) for compound
112-3PA5 complex. Compound 112 is represented as line in red for the

initial complex and stick in cyan for the lowest energy complex. (b)
Plot of the MD-simulated structures of the binding site with compound
112. H-bonds are shown as dotted blue and red lines; Active site amino
acid residues are represented as sticks; the inhibitors are shown as stick
and ball model
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water molecule (W1180). Additionally, the H-bond between
ring D and Glu17 with a distance of 2.93 Å is not strong
enough for the docking model, after MD simulation, the
increased H-bond interactions as the driving force to push
ring D away from the original site (shown in Fig. 14a).

UTC

Based on the docking results, MD simulation is performed
on the 2WMT-185 complex by using the Gromacs program.
The stability of the complex is examined by a 5 ns MD
simulation and a following RMSD calculation. Results
show that the RMSDs of the trajectory with respect to the
initial structure are depicted in Fig. 15a (in blue). The
RMSD of ligand is obtained to get information on position
fluctuations (in red). After an initial minor increase in the
magnitude of ligand atoms fluctuation, the ligand reaches an
equilibrium state characterized by the RMSD profile. The
superimposition of the averaged structure of the CHK1 with
the initial model shows a plane rotated 30° compared with
the initial docking structure, which can be explained by the
significant conformational flexibility of ring C. The orien-
tation of ring C in the binding pocket changes after MD
simulation, due to the altered H-bond interactions. The
results of the MD simulation suggest that the H-bonds
(between the -S of ring B and the -NH of Cys87, the -NH2

at region A and Leu84) have vanished, indicating that these
hydrogen bonding interactions are weak. The H-bonds
(−NH at region A and the oxygen between ring B and ring
C) are located in the same way as obtained after molecular
docking study. The vanished H-bonds are substituted by
new ones which locate at the -NH of ring C with Asp148
(H-3), with Glu134 (H-1) and with Asn135 (H-2), the -NH
between ring B and ring C with Gly16 (H-8). These H-bonds
further increase the ligand binding affinity. Additionally, the
original structural molecule W2021 has disappeared, which

account for the rotation of ring C. Conversely, two water
molecules enter the binding pocket after MD simulation,
mediate the H-bond interactions between the oxygen atom at
region A and Asp148 (H-5), Glu22 (H-6), respectively. There
is an improvement of the docking results for the complex, as
water molecules occupy the position which further comple-
ments the disabled H-bond interaction.

Molecular docking offers reasonable binding structures
for investigated ligands, while the MD simulation accounts
for even the smallest variances. The obtained results of
molecular docking and MD simulations confirm the exis-
tence of a suitable ligand binding site located inside the
receptor. The MD simulation incorporates the flexibility of
both ligand and receptor, improving interactions and en-
hancing complementarity between them. The stable RMSDs
for the three classes indicate that the reliability of the dock-
ing procedure. Some new interactions are produced after
MD simulation: 1) for PP analogs, there are three new H-
bonds formed between the nitrogen atom of ring D and
Lys38 of 3OT3, which indicates that Lys38 is important
for the binding interactions; 2) for TP analogs, the altered
orientation of ring D gives opportunity to produce more
potent and stable interactions (H-1, H-3, H-6 and H-8); 3)
for UTC analogs, the flexibility of ring C derived from the
disappeared water molecule, makes some H-bonds van-
ished, conversely, the entered water molecules further pro-
duce stronger interactions (H-5 and H-6). In a word, the
conformations obtained after MD simulation are more rea-
sonable than the docked conformations.

Conclusions

For the first time we have described in this paper the employ-
ment of the QSAR method on three different series of CHK1

inhibitors to investigate the structural relationship with the

Fig. 15 (a) The root-mean-square deviation (RMSDs) of docked
complex (in blue) and ligand (in red) versus the MD simulation time
in the MD-simulated structures shown in the upper left corner. View of
superimposed backbone atoms of the lowest energy structure of the
MD simulation (cyan) and the initial structure (green) for compound

185-2WMT complex. Compound 185 is represented as line in red for
the initial complex and stick in cyan for the lowest energy complex. (b)
Plot of the MD-simulated structures of the binding site with compound
185. H-bonds are shown as dotted blue and red lines; Active site amino
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inhibitory activity. We also compared two alignment schemes
employed in CoMFA and CoMSIA, namely, ligand-based and
receptor-based alignment, with respect to the predictive ability
and the robustness of the models. As a result, the models using
the ligand-based alignment are superior to that based on the
receptor alignment. Contour maps obtained with these models
provide useful information about the intermolecular interac-
tions of inhibitors with the surrounding environment. In addi-
tion, the docking and MD analysis reveal the important
interactions between the receptor active site residues and the
compound’s functional groups, which are also found that one
common residue Cys87, in the kinase active site played a
significant role in recognition of the inhibitors by presenting
hydrogen bonding interactions in the three classes of CHK1

inhibitors.

1) For PP analogs, the contour maps reveal that at R1

substituent, a bulky group can enhance the kinase ac-
tivity; bulky, electronegative and hydrophobic substitu-
ents at R2 substituent also can improve the inhibitory
activity; minor and electronegative groups appearing
around R3 substituent would be beneficial for the activ-
ity. Moreover, the majority of interactions have been
observed from docking structure which is conserved
throughout the MD simulation, etc., the R1 substituent
mainly acts as H-bond acceptor and the R2 substituent
as H-bond donor to interact with the receptor. And
Leu137, Glu91, Cys87, Asp148, Ser88, Gly90 and
Tyr86 are the key residues for the ligand-receptor
interactions.

2) For TP analogs, the hybrid effects of steric and elec-
trostatic interactions are found to be crucial to the
inhibitory activity in the CoMFA model. Small substit-
uent at R1 area, bulky and hydrophilic groups at R2

substituent, bulky and electronegative groups in R3

region are favorable for the inhibitory activity. The
docking and MD simulation study further reveal that
the key residues are Glu17, Glu85, Glu91, Cys87 and
Ser147. The -NH group between ring C and ring D,
the -NH at ring D, the -NH2 of region A form the
main H-bonds with the receptor.

3) For UTC analogs, according to the statistical analysis
of the standard deviation residues, we assume the steric
and electrostatic model derived from the CoMFA as the
best predictive model. Substitution of small and polar
groups at R2 substituent, bulky, electropositive and
hydrophilic groups at R3 substituent exhibit positive
effect on the activity. Key residues impacting the
ligand-receptor interactions are Cys87, Glu85, Leu84,
Asn135, Ser147, Tyr86 and Ser88. Additionally, the
oxygen atom at R2 substituent, the S atom of ring B,
the -NH and -NH2 groups of region A form H-bonds
with the receptor. And the increased hydrogen bonding

with active-site residues result in more stable complexes
during the MD simulation.

The present study provides an example of identifying the
correct binding mode of CHK1 inhibitors using the QSAR,
molecular docking, and molecular dynamics approaches.
Substantial ability of the model obtained to predict the
external test set molecules supports that the deduced model
can be used for predicting the related activity of the inhib-
itors and designing of novel potent CHK1 inhibitors.
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